clock by M

CETIFICATION

SDG No:

MC47687

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken September 2-5, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC47687. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC47687-1	MW-5	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-2	MW-17	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-3	MW-17-D	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-4	UP-2	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-5	UP-2D	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-6	UP-1	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-7	EB-090616	AQ – Equipment Blank	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-8	S-29R	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges
MC47687-9	S-31R(2)	Groundwater	Volatiles TPHC Ranges
			Extractable TPHC Ranges

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

September 29, 2016

By

AF

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-5 MC47687-1

Date Sampled:

Prep Date

09/02/16

Matrix:

AQ - Ground Water MADEP VPH REV 1.1

DF

1

Date Received: 09/08/16

Method:

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/09/16

Analytical Batch Prep Batch GAB5257 n/a

Run #1 Run #2

Purge Volume

File ID

AB95203.D

Run #1 $5.0 \, \mathrm{ml}$

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	36.7 115 50.3 26.1 30.3	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J B B J J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	92% 97%			30% 30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

By

AP

Client Sample ID: Lab Sample ID:

MW-5 MC47687-1

Matrix:

File ID

980 ml

DE15562.D

AQ - Ground Water

DF

1

Date Sampled: Date Received:

09/02/16 09/08/16

Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/16/16

Prep Date Prep Batch **Analytical Batch** 09/09/16 OP48670 **GDE867**

Run #1 Run #2

Initial Volume

Final Volume

2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	65.4	100	29	ug/l	J
	C9-C18 Aliphatics	39.5	100	17	ug/l	JB
	C19-C36 Aliphatics	47.9	100	28	ug/l	JB
	C11-C22 Aromatics	55.6	100	29	ug/l	J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its	
84-15-1	o-Terphenyl	85%	40-140%			
321-60-8	2-Fluorobiphenyl	95%	40-140%			
3386-33-2	1-Chlorooctadecane	72%	40-140%			
580-13-2	2-Bromonaphthalene	86%	40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID:

MW-17

Lab Sample ID:

MC47687-2

Matrix: Method: AQ - Ground Water

MADEP VPH REV 1.1

Date Sampled:

09/02/16 09/08/16

Date Received:

Percent Solids:

Project: BMSMC, Building 5 Area, Puerto Rico

File ID Run #1 AB95204.D Run #2

DF 1

Analyzed By 09/09/16 AF Prep Date n/a

Prep Batch n/a

Analytical Batch GAB5257

Purge Volume

Run #1

5.0 ml

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5-C8 Aliphatics (Unadj.)	18.5	50	8.8	ug/l	J
	C9- C12 Aliphatics (Unadj.)	167	50	8.0	ug/l	В
	C9- C10 Aromatics (Unadj.)	111	50	9.7	ug/l	В
	C5- C8 Aliphatics	16.2	50	8.8	ug/l	J
	C9- C12 Aliphatics	56.0	50	8.0	ug/l	

CAS No. Surrogate Recoveries Run#1 Run#2 Limits 2,3,4-Trifluorotoluene 88% 70-130% 2,3,4-Trifluorotoluene 93% 70-130%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

GDE867

Report of Analysis

Ву

AP

Client Sample ID: MW-17 Lab Sample ID:

File ID

980 ml

DE15563.D

MC47687-2

09/09/16

Date Sampled: 09/02/16 Date Received: 09/08/16

Matrix: Method: AQ - Ground Water MADEP EPH REV 1:1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/16/16

Prep Date **Analytical Batch** Prep Batch OP48670

Run #1 Run #2

Initial Volume Final Volume

Run #1 Run #2 2.0 ml

DF

1

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	167 120 44.9 164	100 100 100 100	29 17 28 29	ug/l ug/l ug/l ug/l	B JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	83% 89% 69% 103%		40-1 40-1 40-1 40-1	40% 40%	

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-17D MC47687-3

AQ - Ground Water

Matrix: Method:

MADEP VPH REV 1.1

Date Sampled: 09/02/16 Date Received: 09/08/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Run #1 AB95205.D

File ID

DF Analyzed 09/09/16 1

By AF Prep Date

Prep Batch n/a

Analytical Batch GAB5257

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	20.8 166 113 17.6 50.5	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J B B J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	89% 94%		70-13 70-13		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-17D

MC47687-3 AQ - Ground Water Date Sampled: 09/02/16 Date Received: 09/08/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch Run #1 DE15564.D 1 09/16/16 AP 09/09/16 OP48670 **GDE867**

Run #2

Final Volume 2.0 ml

Run #1

Run #2

Extractable TPHC Ranges

985 ml

Initial Volume

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	197 47.1 32.6 194	100 100 100 100	29 17 28 29	ug/l ug/l ug/l ug/l	JB JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	95% 92% 89% 108%		40-1 40-1	40% 40% 40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID:

Lab Sample ID:

UP-2 MC47687-4

Matrix: Method: AQ - Ground Water

MADEP VPH REV 1.1

Project:

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/05/16

09/08/16

Date Received:

Percent Solids: n/a

_							
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AB95206.D	1	09/09/16	AF	n/a	n/a	GAB5257

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	14.6 33.6 30.5 11.7 ND	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J JB JB J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	86% 90%			30% 30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

AP

Page 1 of 1

Client Sample ID:

UP-2 MC47687-4

Lab Sample ID:

AQ - Ground Water

Date Sampled: 09/05/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Date Received: 09/08/16

Project:

BMSMC, Building 5 Area, Puerto Rico

Percent Solids: n/a

Run #1 Run #2 File ID DE15565.D DF Analyzed 09/16/16

Prep Date 09/09/16

Prep Batch OP48670

Analytical Batch GDE867

Initial Volume 990 ml

Final Volume 2.0 ml

1

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	42.6 32.5 31.0 42.6	100 100 100 100	29 17 27 29	ug/l ug/l ug/l ug/l	J JB JB J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	

84-15-1	o-Terphenyl	88%	40-140%
321-60-8	2-Fluorobiphenyl	88%	40-140%
3386-33-2	1-Chlorooctadecane	82%	40-140%
580-13-2	2-Bromonaphthalene	98%	40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID:

UP-2D

Lab Sample ID: Matrix:

MC47687-5

AQ - Ground Water MADEP VPH REV 1.1

Date Sampled:

09/05/16

Date Received: 09/08/16

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Percent Solids:

File ID

Run #1 Run #2 AB95207.D

DF Analyzed 1 09/09/16

Ву AF Prep Date n/a

Prep Batch n/a

Analytical Batch GAB5257

Purge Volume

Run #1 Run #2 5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5-C8 Aliphatics (Unadj.)	16.2	50	8.8	ug/l	J
	C9- C12 Aliphatics (Unadj.)	37.7	50	8.0	ug/l	JB
	C9- C10 Aromatics (Unadj.)	34.4	50	9.7	ug/l	JB
	C5- C8 Aliphatics	13.2	50	8.8	ug/l	J
	C9- C12 Aliphatics	ND	50	8.0	ug/l	

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
	2,3,4-Trifluorotoluene	87%		70-130%
	2,3,4-Trifluorotoluene	92%		70-130%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

AP

09/09/16

40-140%

40-140%

Client Sample ID:

UP-2D

Lab Sample ID:

MC47687-5

Matrix:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

Date Sampled: Date Received:

09/05/16

DF

1

Analyzed

09/16/16

Percent Solids: n/a

09/08/16

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Prep Date Prep Batch OP48670

Analytical Batch GDE867

Run #1 Run #2

Initial Volume **Final Volume**

1-Chiorooctadecane

2-Bromonaphthalene

Run #1

3386-33-2

580-13-2

2.0 ml

Run #2

Extractable TPHC Ranges

File ID

970 ml

DE15566.D

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND 58.7 58.1 ND	100 100 100 100	30 17 28 30	ug/l ug/l ug/l ug/l	JB JB
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1 321-60-8	o-Terphenyl 2-Fluorobiphenyl	85% 95%			40% 40%	

83%

107%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

AF

Page 1 of 1

Client Sample ID:

UP-1

Lab Sample ID:

MC47687-6

Date Sampled: 09/05/16

Matrix:

AQ - Ground Water

Date Received:

09/08/16

Method:

MADEP VPH REV 1.1

DF

1

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

09/09/16

Prep Batch n/a

Prep Date

70-130%

n/a

Analytical Batch GAB5257

Run #1

Run #2

Purge Volume

2,3,4-Trifluorotoluene

5.0 ml

File ID

AB95208.D

Run #1 Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	11.8 77.9 55.2 11.8 21.8	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J B B J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene	89%		70-1	30%	

94%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

AP

Page 1 of 1

Client Sample ID:

UP-1

Lab Sample ID:

MC47687-6

AQ - Ground Water

1

Date Sampled:

09/05/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Date Received:

09/08/16

Project:

BMSMC, Building 5 Area, Puerto Rico

Percent Solids: n/a

Run #1

File ID DE15567.D DF Analyzed 09/16/16

Prep Date 09/09/16

Prep Batch OP48670

Analytical Batch GDE867

Run #2

Final Volume Initial Volume

Run #1

980 ml

 $2.0 \, ml$

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	38.4	100	29	ug/l	J
	C9-C18 Aliphatics	496	100	17	ug/l	
	C19-C36 Aliphatics	350	100	28	ug/l	
	C11-C22 Aromatics	38.4	100	29	ug/l	J

	OTT-OLD INFORMATICS	00.3	100	LO LIGHT
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	79%		40-140%
321-60-8	2-Fluorobiphenyl	88%		40-140%
3386-33-2	1-Chlorooctadecane	82%		40-140%
580-13-2	2-Bromonaphthalene	97%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID:	EB-090616
Lab Sample ID:	MC47687-7

Matrix:

Method:

AQ - Equipment Blank

MADEP VPH REV 1.1

Date Sampled: 09/06/16 Percent Solids: n/a

Date Received: 09/08/16

Project: BMSMC, Building 5 Area, Puerto Rico

		File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
ĺ	Run #1	AB95202.D	1	09/09/16	AF	n/a	n/a	GAB5257
	Run #2							

Purge Volume Run #1 5.0 ml Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	9.0 22.5 23.0 9.0 ND	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J JB JB J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	87% 91%		-	30% 30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: Lab Sample ID:

EB-090616 MC47687-7

AQ - Equipment Blank

Date Sampled: Date Received:

09/06/16 09/08/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids:

Project:

BMSMC, Building 5 Area, Puerto Rico

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 DE15568.D 1 09/16/16 AP 09/09/16 OP48670 **GDE867**

Run #2

Initial Volume Final Volume 960 ml 2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND 144 69.3 ND	100 100 100 100	30 17 28 30	ug/l ug/l ug/l ug/l	B JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	81% 85% 70% 95%		40-1 40-1	40% 40% 40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: S-29R

Lab Sample ID:

MC47687-8

Matrix: Method:

Project:

AQ - Ground Water

MADEP VPH REV 1.1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/06/16 Date Received: 09/08/16

Percent Solids: n/a

	The second second second							
ì	Run #1	File ID AB95209.D	DF 1	Analyzed 09/09/16	By AF	Prep Date n/a	Prep Batch n/a	Analytical Batch GAB5257
	Run #2							

Purge Volume

Run #1 Run #2

5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	19.0 53.1 41.9 18.4 10.6	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J B JB J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	90% 95%			30% 30%	

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: Lab Sample ID:

S-29R MC47687-8

AQ - Ground Water

Date Sampled: 09/06/16 Date Received: 09/08/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

File ID DF Prep Date Analyzed By Prep Batch **Analytical Batch** Run #1 DE15570.D 1 09/16/16 AP 09/09/16 OP48670 **GDE867**

Run #2

Initial Volume Final Volume Run #1 955 ml 2.0 ml

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	119 325 234 109	100 100 100 100	30 17 28 30	ug/l ug/l ug/l ug/l	В
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	77% 87% 63% 100%		40-1 40-1 40-1 40-1	40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID:

S-31R(2)

Lab Sample ID:

MC47687-9

AQ - Ground Water

MADEP VPH REV 1.1

Date Sampled: 09/06/16 Date Received: 09/08/16

Percent Solids: n/a

Method: Project:

Matrix:

BMSMC, Building 5 Area, Puerto Rico

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	AB95210.D	1	09/09/16	AF	n/a	n/a	GAB5257
Run #2	WX77612A.D	10	09/12/16	AF	n/a	n/a	GWX3836

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.)	32.4 1510 ^a	50 500	8.8 80	ug/l ug/l	J
	C9- C10 Aromatics (Unadj.)	67.1	50	9.7	ug/l	В
	C5- C8 Aliphatics	20.4	50	8.8	ug/l	J
	C9- C12 Aliphatics	61.3	50	8.0	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	93% 98%	92% 91%		30% 30%	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-31R(2) Lab Sample ID:

MC47687-9

Matrix: Method:

Project:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/06/16 Date Received: 09/08/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	DE15571.D	1	09/16/16	AP	09/09/16	OP48670	GDE867
Run #2							

		Initial Volume	Final Volume
Run	#1	950 ml	2.0 ml
Run	#2		

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	32.3 172 253 32.3	110 110 110 110	30 18 29 30	ug/l ug/l ug/l ug/l	J B B J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	61% 93% 65% 105%		40-1 40-1	40% 40% 40% 40%	

CHAIN OF CUSTODY

PAGE / OF /

NE		50 D'Angelo Dr., Building One, Marthamogh, MA 01752						809960536427			7	MC47687				7687							
1115			TEL 508-481-4260 FAX: 508-481-7753								-	t Our	•			\neg	7	2	From	NJ.	007		
Client / Reporting Information	an dutalistes	100	1 T, P1 13	Project	Inform	etion	155.63	1 L	1 4		31.1	047	四百岁	Rec	rested	Anah	nda (:	son Ti	_			500	Matrix Codes
Company Name		Project Herrig;												Г	П	T					1		
Anderson Mulholland & Associates		BMSMC 3rd	BMSMC 3rd Quarter Groundwater Sampling, 2916								1		1 1	- 1		ļ		ı		-	DW - Dream West		
Street Address		See							in egypte	N. Janes	TANK TANKS	1	ŀ	ΙI	- 1			- 1		- 1		GW - Ground Water WW - Water	
2700 Westchester Avenue, Suita 417 City Stine	Zn	Cay		Sum	Billion .	t-dermot	- (<i>1</i> -	_	em Re						1 1	- 1			ŀ	- 1			5W - Surface Water SO - Sol
Purchase NY	16477	Humacao		PR		7.										- [- 1	- 1				SL-Sharpe SED Sedment
Project Contact	E-med	Propert 8			Street A	-		_											- 1	- 1	- 1		Ot-O4
Terry Taylor		42:1 2016														- 1	- 1						LEO = Other Liquid AR:- Air
Prope 8	Famili	Clord Purchase	Order 3		Chy			5	mto		Zp				1 1	Ī	- 1	[- 1		- 1		SQL - Other Sole WP - Wee
914-251-0400 Sample(s) Nemo(s)	Phone 8	Protect Menages			42-4-							_					- 1		- 1				FB-Finiti Blant EB-Eovement Stave
N. Rivera, R. Stuart, J.D. Valle, D. Li		Terry Taylor				rc .							200		ш	- 1		- 1	- 1	- 1			RS-Ferna (Spra TS-Trip Store
		Testy verses		Cotoman		Т	Т	1		·	ed Buffle		ЕРН Р	APH.	i I								10-17th Billion
Field ID / Point of Collection]]	Π.	8		ı,	8	BIKA E	VIMA VI	Н		- 1		-		- 1		
		MECHIDI VILLI P	Den de	Time	By	Nes	•	12 3	ĮĮ.	l l	3	<u> </u>	_	\$		_							LAS USE CHLY
-1 MW-5			9-2-16	1334	NR	GN	5	2	Н	Ц	\sqcup	11	Χ	V	\Box	\perp			_	- 1			
-2 MW-17			9-2-16	1627	NR	GW	5	18	Ц	11	Ш	Ш	X	Ÿ.		_Ĺ			[\perp			
-2 MW-17D			9-2-16	1639	NR	GW	5	3		\perp L		┸┚	X	XI						П	$\neg \Gamma$		
-1 UP-2			9-5-16	1241	NR	GW	5	3	П	П	П	TT	X	X		\neg				\neg			
-51 UP-2D	_		9-5-16	1254	NR	GW	5	1	П	Ħ		\top	X	マ マ		_	7	_	\neg	_	$\neg \vdash$		
-6 UP-1			9-5-11.	11.07	16	CW		7	††	17	11	- -	X	ί		-	\dashv			\dashv		+	
-7 EB-090611	6		9-6-16	1045	11	Εß	-	#	H	H	†††	++	٤	Č	-		-		\dashv		- -		1 0 7
-9 5-29 R			9-6-16	A47		GW	-	5	H	+	++	╁		?	\dashv	-		\dashv	-	-			$\rightarrow C H$
-9 S-31R/2)			9-6-16	1304	NR		2	#	\vdash	++	++	╁	\Diamond	9		+			\dashv		-	+	
			1-10-10-		1815	CJIV.	-2	7	H	++	++	++	\neg	\vdash			-	+			-	-	
				-				-	H	H	+	╁┼	\dashv	\dashv	\dashv	+	╫	+	+	+		┿	
11 1.1.				3	\neg				H	Н.	++	╁┼		-		+		\dashv	\dashv	+		-	355.4
Tumpround Time (Business days)			PASSESSES AND ADDRESSES		SERVICES.		Detail	Dallyday	ttie Ird	7	n.	17	17 Sec. 17		Charles and	196000	100	Colorna	en / S	necial is	neirucho	lov Vight	September of the control of the
2 Std. 15 Business Days Std. 16 Susiness Days (by Carecut		بحمرة أثو ومحملا	nat PMy. (Date:				H "A" [L				YASP (П									
19 Chay AUSH	-			ĺ			el TIT (La Lovet 3+4				YASP		y B	- 1		INIT	ALA	SES	SME	<u> T</u>	9	<u> </u>	
2 Day RUSH						uctii (•				-		- [-		- 1
1 Day EMPROENCY	_			. 1		_				님			-	-		LABI	EL VI	ERIFI	CAT	ON_	3.	<u> </u>	
2 Day EMERGENCY 1 Day EMERGENCY	-			1	_				بشمعة	Only				Ĺ									
Emergency & Plush 19A data available VAA Labb	mk		_	ļ			Carrenge LI Reduce	of the Person	- C	C Service													
STEER STEER STEER STEER STEER STEER STEER STEERS	2	Sam	ple Controly may	t be decume	nied bei	ow each	time sac	plus c	hirgi	posses	malon, i	inched	- a	rior d	olivery.		9.	2,]	All raid	Q-Q-6	15000		ADMINISTRAÇÃO DE LA COMPOSITA
Was firsted	9-6-11	6 1200	E01	165	<			-	hed By:	7		1	,		2-	17	<i>/</i>		-	1	-	Z	
Millians by Romani	Date Theor			/				_				-20			-1/	DYLL		- 2-		S/d	and		
Manager 1	Gase Time:	3					4	1										4		K			4
		[terino d Dy				lo 1	24	, 24	3.74				Pr			-			0	B .		2.6,3.2
									بالحال	تعي	-					_	_					44	

MC47687: Chain of Custody

Page 1 of 3

EXECUTIVE NARRATIVE

SDG No: MC47687 Laboratory: Accutest, Massachusetts

Analysis: MADEP VPH Number of Samples: 9

Location: BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Eight (8) samples and one (1) equipment blank were analyzed for Volatiles TPHC Ranges

by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings: 1. Analytes detected in method blank at a concentration below the

reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting

limits; results above the reporting limit/action level are retained.

2. Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

3. MS/MSD % recoveries outside laboratory control limits due to matrix interferences. Results for C9-C12 Aliphatics (unadj.) qualified as

estimated (J) in sample MC47687-2.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Rafuel Infant

Signature:

Date: September 29, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC47687-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/2/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	36.7	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	115	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	50.3	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	26.1	ug/L	1	J	J	Yes
C9 - C12 Aliphatics	30.3	ug/L	1	J	J	Yes

Sample ID: MC47687-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/2/2016

Matrix: Groundwater

Analyte Name	Result	Units D	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	18.5	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	167	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	111	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	16.2	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	56.0	ug/L	1	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/2/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	20.8	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	166	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	113	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	17.6	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50.5	ug/L	1	-	-	Yes

Sample ID: MC47687-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/5/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	14.6	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	33.6	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	30.5	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	11.7	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/5/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	16.2	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	37.7	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	34.4	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	13.2	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47687-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/5/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	11.8	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	77.9	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	55.2	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	11.8	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	21.8	ug/L	1	J	J	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/6/2016

Matrix: AQ - Equipment Blank

METHOD: MADEP VPH

Analyte Name	Result	Units Di	ution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	9.0	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	22.5	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	23.0	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	9.0	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47687-8

Sample location: BMSMC Building 5 Area

Sampling date: 9/6/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	19.0	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	53.1	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	41.9	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	18.4	ug/L	1	J	J	Yes
C9 - C12 Aliphatics	10.6	ug/L	1	J	J	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/6/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	32.4	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	1510	ug/L	10	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	67.1	ug/L	1	В	-	Yes
Ç5 - C8 Aliphatics	20.4	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	61.3	ug/L	1	-	-	Yes

DATA REVIEW WORKSHEETS

Type of validation	Full:X Limited:	Project Number:_MC47687 Date:09/02-06/2016 Shipping date:09/06/2016 EPA Region:2
REVIEW OF	VOLATILE PETROLE	UM HYDROCARBON (VPHs) PACKAGE
actions. This docume informed decision and assessed according to METHOD FOR THE I Massachusetts Depart validation guidelines p	nt will assist the review in better serving the the data validation guid DETERMINATION OF Nament of Environmental promulgated by the US dation actions listed on	organics were created to delineate required validation wer in using professional judgment to make more moreds of the data users. The sample results were ance documents in the following order of precedent VOLATILE PETROLEUM HYDROCARBONS (VPH Protection, Revision 1.1 (2004). Also the generated Hazardous Wastes Support Section. The Quantum the data review worksheets are from the prima
The hardcopied (lab received has been review for SVOCs included)	riewed and the quality of	test_Laboratories data package control and performance data summarized. The data
Lab. Project/SDG No.: No. of Samples: Field blank No.: Equipment blank No.: Trip blank No.: Field duplicate No.:	9 MC47687-7	Sample matrix:Groundwater
X Data CompleX Holding TimeN/A GC/MS TuninN/A Internal StandX BlanksX Surrogate ReX Matrix Spike/	s lg dard Performance	X_ Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Overall Com (C5_to_C12_Aliphatics	ments:Volat ;;_C9_to_C10_Aromatics	tiles_by_GC_by_Method_MADEP_VPH,_REV_1.1 s)
Definition of Qualifiers:		
J- Estimated results U- Compound not R- Rejected data UJ- Estimated not Reviewer: Augustian Date: 09/28/2016	detected	

		Crite	ria were not m	et and/or see below	_
l.	DATA COMPLETNE A. Data Packag				
MISS	ING INFORMATION	DATE LAB. CONTAC	CTED	DATE RECEIVED	_
			······································		
В.	Other			Discrepand	cies:
			-71 - 100 - 21 - 100		
	54 18 04 04 04 04 04 04 04 04 04 04 04 04 04				

All criteria were met	X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
Sa	amples analyzed	within method re	commended holdi	ng time

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (Criteria: 4 ± 2 °C): 5.7°C

Actions: Qualify positive results/non-detects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ).

If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R).

If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		C	All crit riteria were not met ar	eria were metX nd/or see below
CALIBRAT	IONS VERIFIC	ATION		
			trument calibration are dimaintaining acceptate	e established to ensure ole quantitative data.
Dat	e of initial calib	ration:07/13/16	08/1	7/16
Dat	es of initial cali	bration verification:_	_07/13/1608/1	7/16
Inst	rument ID num	bers:GCA	BG	CWX
Mat	rix/Level:	_AQUEOUS/MEDIUI	MAQL	JEOUS/MEDIUM
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
Initi	al and initial ca	libration verification	meet method specific I	requirements

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest. When
 this condition is met, linearity through the origin may be assumed, and the average
 calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9-C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and

DATA REVIEW WORKSHEETS

percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:0	7/13/16	08/17/16
Dates of continuing calibration verifica	tion:_09/09/16	09/12/16
Dates of final calibration verification:	09/09/16	09/12/16
Instrument ID numbers:	GCAB	GCWX
	S/MEDIUM	

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
Contin	uing and final c	alibration verific	cation meets method speci	fic requirements.

Note:

A separate worksheet should be filled for each initial curve

All criteria were met	_X
Criteria were not met and/or see below _	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. A Laboratory Method Blank must be run after samples suspected of being highly contaminated to determine if sample carryover has occurred.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE LAB ID ANALYZED		LEVEL/ Matrix	COMPOUND	CONCENTRATIO UNITS	N
	BLANKS MEET .OWING:			CRITERIA_EXCEPT	_FOR_
_09/09/16	_GAB5257-MB	AQUEOUS_		tics)21.5_ug/L_ tics)21.8_ug/L	
_09/12/16	_GWX3836-MB	AQUEOUS	C9-C12_(Aliphat	ics)12.4_ug/L	

Note: Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

COMPOLIND

CONCENTRATION

Field/Trip/Equipment

IARID

DATE

A methanol trip blank or acidified reagent water trip blank **should** continually accompany each soil/sediment sample or water sample batch, respectively, during sampling, storage, and analysis.

I EVEL /

ANALYZED	LAB ID	MATRIX	UNITS			
_	_			T_BLANKNO_TRIP/FIELI	<u></u>	

Note: Target analytes detected in the equipment blank above the MDL but below the reporting limit. Laboratory qualified the results with a J and JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

All criteria were met _	_X
Criteria were not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

SAMPLE ID

All criteria were met	X
Criteria were not met and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SUPPOCATE COMPOUND

SAMPLE ID	SURROGATE COMP 2,3,4-Trifluorotoluene	OUND		ACTION
SURROGATE!	STANDARD_RECOVE	RIES_WIT	HIN_LABORATOR	Y_CONTROL
25				
QC Limits* (Aque LL_to_UL QC Limits* (Solid	70_to_130_	to	to	
LL_to_UL		to	to	

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- Obvious interference is present on the chromatogram (e.g., unresolved (1)complex mixture);
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3)The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _	
Criteria were not met and/or see below	X

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria

Sample ID:_MC47687-2_MS/MSD	Matrix/Level:_Groundwater
Sample ID:_MC47721-1_MS/MSD	Matrix/Level:_Groundwater

List the %Rs. RPD of the compounds which do not meet the QC criteria.

The QC reported here applies to the following samples: Method: MADEP VPH REV 1.1 MC47687-1, MC47687-2, MC47687-3, MC47687-4, MC47687-5, MC47687-6, MC47687-7, MC47687-8, MC47687-9

C	ompound	MC47687 ug/l	'-2 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
(U	5- C8 Aliphatics Inadj.) 9- C12 Aliphatics	18.5	J	300	308	103	300	313	104	2	70-130/25
(U	Inadj.) 9- C10 Aromatics	167	В	450	598	133* a	450	622	138* a	4	70-130/25
	lnadj.)	111	В	150	253	169* ь	150	257	171* ь	2	70-130/25
	Surrogate Recovery 2,3,4-Trifluorotol 2,3,4-Trifluorotol	uene		MS 89% 94%	MSD 90% 95%	MC4768 88% 93%	37-2	Limits 70-1309 70-1309	-		

	All criteria were met Criteria were not met and/or see belowX
	rol limits due to possible matrix interference. rol limits due to high level in sample relative to spike amount. ontrol Limits.
Note:	MS/MSD % recoveries and RPD within laboratory control limits in MC47721-1MS/-1MSD.
	Results for C9-C12 Aliphatics (unadj.) qualified as estimated (J) in sample MC47687-2.
informed protoconjunction we data. In those only the samp may be determined to the control of th	taken on MS/MSD results alone to qualify the entire case. However, used fessional judgment, the data reviewer may use the MS/MSD results in with other QC criteria and determine the need for some qualification of the instances where it can be determined that the results of the MS/MSD affect ble spiked, the qualification should be limited to this sample alone. However, it mined through the MS/MSD results that the laboratory is having a systematic analysis of one or more analytes, which affects the associated samples.
2. MS/MS	SD – Unspiked Compounds
	entrations of the unspiked compounds and determine the % RSDs of these the unspiked sample, matrix spike, and matrix spike duplicate.
COMPOUND	CONCENTRATION SAMPLE MS MSD %RPD ACTION
Criteria: None	specified, use %RSD ≤ 50 as professional judgment.
Actions:	
If the % RSD	> 50, qualify the results in the spiked sample as estimate (J). is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, hal judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION					
LCS_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS									

Criteria:

- Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of nnonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

			Il criteria were metX_ net and/or see below
IX.	FIELD/LABORATORY DUPLICATE PR	ECISION	
			V.
	e IDs:MC47687-2/MC47687-3 e IDs:MC47687-4/MC47687-5	Matrix Matrix	

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION			
Field duplicate analyzed with this data package. RPD within laboratory and validation guidance document criteria (+ 50 %) for analytes detected above reporting limits.								

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

	All criteria were met	X
Criteria were not	t met and/or see below_	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH
 Analyte each time a new GC column is installed, and must be verified and/or
 adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

4-14-5

		С		All criteria were metX met and/or see below						
XII.	QUANTITATION LIMITS AND SAMPLE RESULTS									
The sa	The sample quantitation evaluation is to verify laboratory quantitation results.									
1.	In the space below, please show a minimum of one sample calculation:									
MC470	687-1	VPH (C5 – C7 Ali	ohatics)	$RF = 3.913 \times 10^5$						
FID										
[]=(4	916305)/(3.913	x 10 ⁵)								
[]=12	2.56 ppb Ok									
MC476	687-1	VPH (C9 - C10 A	romatics)	$RF = 7.308 \times 10^5$						
PID										
[]=(3	6775124)/(7.30	8 x 10 ⁵)								
[]=50).32 ppb Ok									
2. (MDLs		erify that the results were	above the labor	ratory method detection limit						
3.		formed, were the SQLs of imples and dilution factor in		ngly by the laboratory? List w.						
S	AMPLE ID	DILUTION FACTOR	REASO	N FOR DILUTION						
MC47	7687-9	10 X	Analytes over	calibration range						
										
		formed and the results we sted compounds. List the a		encentration range, estimate s/compounds:						

EXECUTIVE NARRATIVE

SDG No: MC47687 Laboratory: Accutest, Massachusetts

Analysis: MADEP EPH Number of Samples: 9

Location: BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Eight (8) samples and one (1) equipment blank were analyzed for Extractables TPHC

Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

, , ,

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings:

1. Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting

limits; results above the reporting limit/action level are retained.

2. Target analytes (C9-C18 aliphatics) detected in the equipment blank above the reporting limit. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Rafuel Infant

Signature:

Date: September 29, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC47687-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/2/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	65.4	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	39.5	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	47.9	ug/L	1	JB	U	Yes
C11 - C22 Aliphatics	55.6	ug/L	1	J	J	Yes

Sample ID: MC47687-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/2/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	167	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	120	ug/L	1	В	-	Yes
Ç19 - C36 Aliphatics	44.9	ug/L	1	JB	U	Yes
Ç11 - C22 Aliphatics	164	ug/L	1	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/2/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units D	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	197	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	47.1	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	32.6	ug/L	1	JB	U	Yes
Ç11 - C22 Aliphatics	194	ug/L	1	-	-	Yes

Sample ID: MC47687-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/5/2016 Matrix: Groundwater

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	42.6	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	32.5	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	31.0	ug/L	1	JB	U	Yes
C11 - C22 Aliphatics	42.6	ug/L	1	J	J	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/5/2016 Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	100	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	58.7	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	58.1	ug/L	1	JB	U	Yes
C11 - C22 Aliphatics	100	ug/L	1	_	U	Yes

Sample ID: MC47687-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/5/2016

Matrix: Groundwater

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	38.4	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	496	ug/L	1	-	J	Yes
Ç19 - C36 Aliphatics	350	ug/L	1	-	-	Yes
Ç11 - C22 Aliphatics	38.4	ug/L	1	J	J	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/6/2016

Matrix: AQ - Equipment Blank

METHOD: MADEP EPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	100	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	144	ug/L	1	В	-	Yes
Ç19 - C36 Aliphatics	69.3	ug/L	1	JB	U	Yes
Ç11 - C22 Aliphatics	100	ug/L	1	-	U	Yes

Sample ID: MC47687-8

Sample location: BMSMC Building 5 Area

Sampling date: 9/6/2016 Matrix: Groundwater

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	119	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	325	ug/L	1	-	J	Yes
Ç19 - C36 Aliphatics	234	ug/L	1	В	-	Yes
Ç11 - C22 Aliphatics	109	ug/L	1	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/6/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	32.3	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	172	ug/L	1	В	-	Yes
Ç19 - C36 Aliphatics	253	ug/L	1	В	-	Yes
Ç11 - C22 Aliphatics	32.3	ug/L	1	J	J	Yes

DATA REVIEW WORKSHEETS

Type of validation Full:X Limited:	Project Number: _MC47687 Date:09/02-06/2016 Shipping date:09/06/2016 EPA Region:2
REVIEW OF EXTRACTABLE PETROL	EUM HYDROCARBON (EPHs) PACKAGE
validation actions. This document will assist the more informed decision and in better serving were assessed according to the data validati precedence METHOD FOR THE DETER HYDROCARBONS (VPH), Massachusetts Dep (2004). Also the general validation guidelines	tile organics were created to delineate required e reviewer in using professional judgment to make the needs of the data users. The sample results on guidance documents in the following order of MINATION OF EXTRACTABLE PETROLEUM partment of Environmental Protection, Revision 1.1 promulgated by the USEPA Hazardous Wastes dation actions listed on the data review worksheets is otherwise noted.
The hardcopied (laboratory name) _Accute received has been reviewed and the quality co review for SVOCs included:	st_Laboratories data package ntrol and performance data summarized. The data
Lab. Project/SDG No.:MC47687No. of Samples:9	
Field duplicate No.:MC47687-2/MC47687-	3;_MC47687-4/MC47687-5
X Data CompletenessX Holding TimesN/A GC/MS TuningN/A Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X_ Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Overall _Extractable_Petroleum_Hydrocarbons_by_GC (C9_to_C36_Aliphatics;_C11_to_C22_(Aromat	
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated noodetect Reviewer: Au Mulium Date: _09/28/2016	

		Criteria were not m	et and/or see below
l.	DATA COMPLETNE A. Data Packag		
<u>MISS</u>	ING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
В.	Other		Discrepancies:
B.	Other		Discrepancies:
В.	Other		Discrepancies:

All criteria were met	X
Criteria were not met and/or see below_	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
Samples	extracted and ar	alyzed within me	thod recommend	ed holding time

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature ((Criteria: 4 + 2 °C):	5.7°C
-----------------------	----------------------	-------

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Crite	All criteria eria were not met and/o	a were metX or see below
CALIBRAT	IONS VERIFIC	ATION		
	at the instrum		nstrument calibration producing and mai	
Dat	e of initial calib	ration:08/05	5/16	
Dat	es of initial cali	bration verification:_	08/05/16	
Inst	rument ID num	bers:GCD	E	
Mat	rix/Level:	_AQUEOUS/MEDIUI	M	,,
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
Initi	al and initial ca	libration verification	meet method specific	requirements
	I .			

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the
 average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - o The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

DATA REVIEW WORKSHEETS

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Dat	e of initial calib	ration:08/05	5/16				
Dat	Dates of continuing calibration verification:09/16/16						
Dat	Dates of final calibration verification:09/16/16						
Inst	rument ID num	bers:GCD	E				
Mat	rix/Level:	_AQUEOUS/MEDIUI	M				
DATE	LAB FILE	ANALYTE	CRITERIA OUT	SAMPLES			
	ID#		RFs, %RSD, %D, r	AFFECTED			
!							
Initial and	continuing calib	ration meets method	specific requirements	. Closing calibration			

included in data package.

A separate worksheet should be filled for each initial curve

All criteria were met	_X
Criteria were not met and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. A Laboratory Method Blank must be run after samples suspected of being highly contaminated to determine if sample carryover has occurred.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

ANALYZED	LAB ID	MATRIX	COMPOUND	UNITS
_METHOD BL _THE_CASES_				CRITERIA_EXCEPT_IN_
09/16/16	OP48670-MB	3Aq./low		s28.9_ug/l cs34.7_ug/l

Note: Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

Field/Trip/Equipment

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_NO_TRIP/FIEL _PACKAGE.	D_BLANKS_A	NALYZED_	ASSOCIATED_WIT	H_THIS_DATA
_09/16/16	_MC47687-7_	_Aqueous_	C9-C18_Aliphatics	s144_ug/L

Note: Analytes detected in equipment blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

All criteria were met	X
Criteria were not met and/or see below_	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met>	<u></u>
Criteria were not met and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROG S1	SATE COMPOU S2	S3 DND	S4	ACTION
_SURROGATE	_STANDAF	RDS_RECOVER	RIES_WITH	IN_LABORA	TORY_CONTROL
S1 = o-Terphen	-			uorobiphenyl	
S3 = 1-Chloroo QC Limits (%)* _LL_to_UL_	(Aqueous) 40_to_140			•	ene 40-140% o_140_
QC Limits* (Sol _LL_to_UL	•	to	to	to	

Note:

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met	
Criteria were not met and/or see belowN/A	_

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

INIQUINOD Recov	renes and Precision C	птепа			
Sample ID:				Matrix/Level:	•
List the %Rs, R	PD of the compounds	which do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	-				4
					

Note: No MS/MSD analyzed with this data package. Blank spike/blank spike duplicate used to assess accuracy. % recoveries and RPD within laboratory control limits.

		Crite	ria were no	All criteria t met and/or see	were met belowN/A
No action is taken informed profession conjunction with other data. In those instraffect only the same However, it may be a systematic problessociated samples	nal judgment, the QC criteria ances where it apple spiked, the determined through in the analysis.	he data and deter can be o qualification	reviewer in mine the redetermined tion should MS/MSD re	nay use the MS need for some qu that the results I be limited to thi esults that the lab	/MSD results in alification of the of the MS/MSD is sample alone oratory is having
2. MS/MSD – l	Unspiked Compo	ounds			
List the concentration compounds in the u					
COMPOUND	CONCENTRA SAMPLE	ATION MS	MSD	%RPD	ACTION
,					
Criteria: None speci	ified, use %RSD) <u><</u> 50 as	profession	al judgment.	

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

Actions:

			Criteria		et and/or see below			
	VIII.	LABORATORY CON	ITROL SAMPL	E (LCS/LCS	D) ANALYSIS			
matric		ata is generated to de	termine accura	cy of the ana	alytical method for vario	us		
	1.	LCS Recoveries Crite	eria					
		List the %R of compo	ounds which do	not meet th	e criteria			
LCS II)	COMPOUND	% R	QC LIMIT	ACTION			
LCS	S_REC	OVERY_WITHIN_LAB	ORATORY_CO	ONTROL_LI	мтѕ			
1000000			V 22			_		
-						-		
	Criteria: * Refer to QAPP for specific criteria. * The spike recovery must be between 40% and 140%. Lower recoveries of n-nonane are permissible. If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative. RPD between LCS/LCSD must be < 25%. Actions:							
		e outside the %R and			ne number of compound nitude of the excedance			
the as If the for the If more	sociated %R of the affected than the social strength in the second secon	d samples and accept the analyte is < LL, qu d analyte in the assoc half the compounds in itive results as (J) and	nondetects. ualify all positivited samples. the LCS are no	re results (j)	for the affected analyte and reject (R) nondeted required recovery criteriall target analyte(s) in the	its		
2.	Freque	ency Criteria:						
per ma f no, t the eff	atrix)? <u>Y</u> the data ect and	<u>'es</u> or No. a may be affected. Us	e professional gly. Discuss a	judgment to	matrix (1 per 20 sample determine the severity elow and list the sample	of		

	All criteria were metX_ Criteria were not met and/or see below
IX. FIELD/LABORATORY DUPLICATE	PRECISION
Sample IDs:MC47687-2/MC47687-3 Sample IDs:MC47687-4/MC47687-5	Matrix: Groundwater Matrix: Groundwater

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Field duplicate a	nalyzed w	th this data packa	ge. RPD within labor	atory an	d validation
guidance do	cument crit	егіа (<u>+</u> 50 % RPD)	for analytes concen	tration >	5 SQL.

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX	
Criteria were not met and/or see below	_

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

Comments: Not applicable.

		Crit	eria were not	All criteria w		
2.	If target analytes a laboratory resubmit t	nd/or TICs were	not correctly		•	
3.	Breakthrough deternevaluated for potenti % recovery of the fried basis by quantifying and aromatic fractionaphthalene or 2-m the total concentra or LCSD, fractionat	al breakthrough or actionation surrogate naphthalene and ns of the LCS an ethylnaphthalene tion for naphthale	n a sample speate (2-bromon 2-methylnaph d LCSD. If e in the alipha ene or 2-metl	ecific basis to aphthalene) thalene in bither the continuous fraction by Inaphthal	oy evaluation and on a oth the aliconcentration exceeds are in the	ng the batch phatic on of 5% of a LCS
	NOTE:	The total comethylnaphthal summation of aliphatic fractionaromatic fractio	the concer n and the cor	CS/LCSD partration de	ir include tected in	es the 1 the
	_Comments:Conc _concentration_for_r	entration_in_the_a paphthalene_and_:	liphatic_fraction 2-methylnapht	on_<_5%_of	the_total	
4.	Fractionation Checontaining 14 alkane each constituent. The fractionation efficient optimum hexane volunot allowing significationatined in the fractionatined in the fractionatine.	es and 17 PAHs a e Fractionation Cha by of each new lot ume required to eff ant aromatic hydrotionation check s	t a nominal control of solution in the solution in the solution of solution break ocarbon break olution, exclusion, exclu	oncentration nust be used cartridges, a aliphatic hyd kthrough. Foding n-nona	of 200 no d to evaluate nd establish frocarbons or each an ne, the Pe	g/µl of ite the sh the while nalyte ercent
	Is a fractionation che	ck standard analyz	zed?		Yes? or I	No?

All criteria were metX
Criteria were not met and/or see below

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

JC47687-2

EPH (C11 – C22, Aromatics)

RF = 114,553

[] = (9358772)/(114,553)

[] = 81.7 ug/ml Ok

JC47687-2

EPH (C19 - C36, Aliphatics)

RF = 72,594

[] = (1597157)/(72,594)

[] = 22.0 ug/ml Ok

DATA REVIEW WORKSHEETS

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION			
		 			
· · · · · · · · · · · · · · · · · · ·					
445 445	 				
	_				
	_				
	10.79				

If dilution was not performed, affected samples/compounds:	results	(J) fo	r the	affected	compounds.	List the